Brain Imaging Can Detect Early-Stage Psychosis

By Rick Naurert PhD
April 26th, 2022
Medically reviewed by Paul Sietes, MD.
Brain Imaging Can Detect Early-Stage Psychosis

A new study shows that brain imaging techniques can detect the development of psychosis in high-risk patients at an early stage. Researchers from the University of Basel in Switzerland and Western University in Canada stated that detecting psychosis early increases the chances of effective treatment.

Although the ability to diagnose psychosis in youth has improved, the new technique may finally help professionals examine young people with initial psychotic symptoms and reliably say who will develop acute psychosis and who will not.

Psychosis has long been assumed to be a condition caused by disturbed communication between various groups of nerve cells, researchers said. Modern imaging techniques can make these connections between regions of the brain visible.

Researchers explored whether changes in the anatomical structure of brain networks can already be detected in people with an increased risk of psychosis. The study was carried out in collaboration with scientists from the Psychiatric University Clinics Basel, Western University and Lawson Health Research Institute in Ontario, Canada, and appears in JAMA Psychiatry.

The researchers, led by Drs. André Schmidt and Lena Palaniyappan, focused on cortical folding, known as gyrification. Specifically, they examined how the folds in various regions of the brain interact with each other, and whether this interaction is impaired in high-risk patients.

They also tested how precisely they could use the cortical connectivity to predict which high-risk patients would suffer from psychosis and which would not.

For their study, the researchers examined 44 healthy control subjects, 38 patients with first-episode psychosis, and 79 people with an increased risk of psychosis, of which 16 later developed fully-formed psychosis.

They reconstructed the brain’s nerve pathways using magnetic resonance imaging and methods from mathematical graph theory, with which they described a network of nodes.

The results show that in comparison to the healthy control group, the folding in individual regions of the brain in patients with an initial psychotic episode and those with a later psychosis transition showed reduced integration and increased segregation.

The analysis also showed that predictions could be made with more than 80 percent accuracy about which patients would later suffer from psychosis and which would not.

The finding represents a new biomarker for clinical diagnosis.

“Our results indicate that this type of network analysis could significantly improve individual risk prognoses,” said Schmidt, who led the project.

“Future longitudinal studies with larger samples are now needed to validate the prognostic accuracy of this measurement.”

Source: University of Basel/EurekAlert

Dr. Rick Naurert has over 25 years experience in clinical, administrative and academic healthcare. He is currently an associate professor for Rocky Mountain University of Health Professionals doctoral program in health promotion and wellness. Dr. Naurert began his career as a clinical physical therapist and served as a regional manager for a publicly traded multidisciplinary rehabilitation agency for 12 years. He has masters degrees in health-fitness management and healthcare administration and a doctoral degree from The University of Texas at Austin focused on health care informatics, health administration, health education and health policy. His research efforts included the area of telehealth with a specialty in disease management.